
 © 1995, JimNeiL All Rights Reserved

terse
Relief for the Forlorn

Programmer

A language with hi-level look-
and-feel, low-level control

JimNeiL

pock to Captain Kirk: “Captain, you expect me to build a
mnemonic memory unit using stone knives and bear skins!”
Tools– where would we be without them? In the
programmer's world they are the means to the end: a
functioning program. Without them we would all be coding

by fat-fingering a series of zeros and ones into the computer's memory
through front panel switches. Over the years programming tools have
advanced by leaps and bounds in all areas except one. It seems that
after the invention of the macro assembler in the '60s, the assembly
language programmer has been forgotten.

Most non-trivial programming projects could benefit from some
assembly language programming. Speed is often required for device
drivers, interrupt routines, highly repetitive tasks, bit manipulation and
other real-time programming situations. Another reason could be the
need to access special functions not directly accessible by a high-level
language. Modern high speed processors expose a whole new class of
problems to software solutions accessible only through low-level
software control.

Long development schedules, maintenance considerations, and the
challenge of locating highly skilled (and somewhat masochistic)
programmers willing to work in the assembly language environment,
have all but eliminated assembly language as a viable choice for the
system designer. As a result, we all endure oversized, plodding

programs and await the salvation of faster hardware to make them
tolerable.

I have earned a good living programming in assembly language
since 1972. Through the years, this work became less exciting and more
repetitive. The housekeeping chores associated with this level of
programming were taking their toll. The thrill was gone.

When I first programmed the Intel 8086 in October 1978, I was
frustrated by the differences between 8086 assembly language and
traditional assembly language. The 8086 assembler was much more like
a compiler than an assembler. The concept of data typing, common in
high-level languages, was foreign to my assembler experience. I had
been accustomed to specifying operand types as part of the mnemonic
not having the assembler derive them by examining the operands. The
support of long symbol names, procedure definitions, and data
structures further compounded my disorientation. Additionally, the
abundance of instructions and the special purpose registers coupled with
the segmented architecture made my early 8086 programming attempts
intensely painful experiences.

If At First You Don't Succeed...
In desperation I invented my own traditional assembly language for the
8086 modeled after 8080 assembly language. I implemented an
assembler and used it for about a year. After this experience I
recognized Intel's wisdom in departing from the traditional assembler
model. Programming in this traditional assembly language was no less
agonizing. Worse yet, bugs were introduced as a direct result of the
increased attention-to-detail burden placed upon the programmer. Not
being too proud to admit a mistake, I abandoned this concept and
reverted to standard 8086 assembly language.

Necessity Is The Mother of Invention
A few months later I was faced with another mammoth assembly
language effort. The anticipation of writing that much 8086 assembly
language left me in a state of despair and high-level language was out of
the question due to speed/space constraints (those were the days of the
64k 4.77 MHz 8088 machines). It was imperative that I leverage my
productivity. After several sleepless nights terse was conceived. The
concept was for a structured symbolic language with low-level control
that would help programmers be more productive. The whole key was

S

Jim is currently an Algorithm Designer with AuthenTec, Inc. in
Melbourne Florida. Jim may be reached by phone at (407) 728-7005
or by E-mail at jim-neil@digital.net. The terse language syntax and
compiler are Copyright © 1987-1995, Jim Neil, All Rights Reserved.

terse: Relief for the Forlorn Programmer © 1995, JimNeiL All Rights Reserved

2

notation. Imagine doing calculus in English without the benefits of
mathematical notation!

...Try, Try Again
terse is a computer programming language designed specifically for the
Intel x86 family of microprocessors (8086/8088 through Pentium and
beyond). It offers the programmer complete control over the processor
(formerly only available to assembly language programmers) without
the tedium and bookkeeping chores formerly associated with this type
of programming. This is achieved through the utilization of a high-level
language syntax without sacrificing control over the generated code.
The richness of the x86 family CISC instruction set makes terse an
extremely powerful and versatile yet extraordinarily easy to learn and
use language.

A major difficulty with assembly language is that it is vertical in
nature. What I mean by vertical is the single statement per line, column
oriented format. terse is a horizontal free format language, allowing
multiple statements per line. This allows the programmer to get a
meaningful portion of the program on the screen, important when using
today's full screen editors (the days of listings are gone forever).
Conditional and looping statements in assembler are label and jump
oriented leading to spaghetti code and the need to
constantly invent meaningful labels. In terse, the
conditional and looping structure is intuitive and
makes the code exceedingly readable. With the
proper use of indentation (a style issue, not enforced
by the language) the programmer is able to get a feel
for the flow of the program with only a cursory
examination of the source code.

Notation and Correlation
terse is operator rich employing prefix, postfix, and
infix notation. It is a context sensitive language to
which humans adapt intuitively. The selection of
operators was given a considerable amount of
attention. In picking each operator I insisted on
having a reason for the choice, none was an arbitrary
decision. When explaining the language I always
specify the logic behind the selection the individual
operators. These reasons assists in making the
necessary mental correlation required to recall the
individual operators. The commonly used operators
are obvious to programmers.

Learning by Example
A complete definition of the language is beyond the scope of this article,
however a brief examination of the syntax should give the reader a good
idea of its structure. The spaces around some operators are a stylistic
consideration and not required by the syntax of the language. Let's take
a look at some examples.

Example 1(a) shows six simple terse statements along with their

generated code. Observe the use of symbolic operators in place of the
mnemonics. Notice that each statement is terminated by a semicolon.
These operators should be intuitive to most programmers with the
exception of the unary postfix + operator used to represent the
increment (Inc) operation. If the terse statement was ax++;, it would
generate two Inc instructions, ax+++; would generate three, etc.
Note the register ax being used as the work register in each of these
statements. In Example 1(a), I have purposely written one statement per
line to show the correspondence between the terse and the assembly
language. terse allows for compound statements to reduce the need to
repeat information common to a series of instructions.

The same series of instructions could be generated with the four
terse statements in Example 1(b). The non-assignment operations
(ax + cat - fox+;) are performed in a strict left-to-right fashion
with no operator precedence (i.e., Add, Sub, Inc). The work register
(ax in this example) is repeated automatically in each generated
instruction.

These four statements still contain redundant information and may
be further reduced to the single terse statement shown in Example 1(c).
Assignments are handled differently than non-assignment operations.

Starting from the left, the destinations are stacked
internally by the compiler until the last one (ax in
this example) is encountered. This last destination
becomes the work register. The last (rightmost)
assignment (ax = dog) is performed first,
followed immediately by any arithmetic/logical
instructions in strict left to right order. Once the
expression is fully evaluated in the work register,
the stacked destinations are used to generate the
remaining assignments, in right-to-left order using
the work register as the source for each. This one
compound terse statement generates the exact
same code as the multiple terse statements shown
in both Examples 1(a) and 1(b).

Go with the Flow
Now let's take a look at some examples of flow
control. Looping is a very common occurrence in
all programming languages. In assembly
language, it is typically accomplished using
conditional jumps (gotos). A trivial looping is a
delay while loop. Example 2 demonstrates a
simple delay loop implemented by loading the

accumulator with 1000 and decrementing it until it becomes zero. The
unary postfix - operator represents the decrement (Dec) operation that
works like the increment operation described earlier. The <> operator is
used to indicate not equal (greater than or less than). I didn't use !=
because ! is used to denote interrupt (i.e., !21h; generates Int 21h).
The use of a conditional operator followed by a label (e.g., <>Delay;)
implies a conditional jump instruction (e.g., Jne Delay), Again, this
example is written as four separate statements to demonstrate the
correspondence between the terse and the generated assembly language.

These statements can be re-written as shown in Example 3. Observe

terse gives you
direct access to

the flags ...
[and] ... all the
other processor

general and
special purpose

registers —
terse Generated Code

(a)
 ax = dog; Mov ax,dog
 ax + cat; Add ax,cat
 ax - fox; Sub ax,fox
 ax+; Inc ax
 cow = ax; Mov cow,ax
 elk = ax; Mov elk,ax
(b)
 ax = dog; ax + cat - fox+;
 cow = ax; elk = ax;
(c)
 elk = cow = ax = dog + cat - fox+;

Example 1: (a) Six simple terse statements shown along with
their corresponding generated code; (b) the same code is
generated with four statements, using a compound arithmetic
statement; (c) again the same code, this time combining
compound assignment and compound arithmetic statements.

terse Generated Code
 ax = 1000; Mov ax,1000
Delay: Delay:
 ax-; Dec ax
 <>Delay; Jne Delay

Example 2: A simple delay loop.

terse Generated Code
 ax = 1000; Mov ax,1000
 { ax-; }<>; ?Top01:
 Dec ax
 Jne ?Top01

Example 3: The simple delay loop, re-written using terse
structured flow control constructs.

terse: Relief for the Forlorn Programmer © 1995, JimNeiL All Rights Reserved

3

the use of braces to define the bounds of the do-while loop. Any
number of statements may be placed inside the braces, including other
nested braces. One of the real advantages of terse begins to come to
light in this example. Notice that terse gives you direct access to the
flags (condition codes) as defined by the individual processor
operations. This, coupled with the direct control over all the other
processor general and special purpose registers, puts terse in a class by
itself. The compiler also takes care of the label generation
housekeeping chores.

Simple if statements tend to be complicated to write and even more
difficult to read in assembly language. terse supports both if-then and if-
then-else statements. Example 4 is an if statement that sets al to 5 if it
is above 5: The statement al - 5 ? appears, at first glance, to be a
subtraction operation. The question mark (?) terminator (as opposed to
the usual semicolon) modifies the meaning of the statement. It is well
known that an arithmetic comparison operation is simply a subtraction
where the flags are set but the result is not stored. The question mark
tells terse that you are not interested in the result, you simply wish to
compare the operands. So, you can think of the question mark operator
as the “just asking” operator. The use of the >> operator to denote
above was chosen because > already denotes greater than. Above is an
unsigned operation while greater than is a signed operation. Since
unsigned operators work with potentially larger numbers, it seemed
logical to use a (physically) larger operator. Also, the greater than
operator (>) was well defined and the above operator was not.

Now let's look at an if-then-else. Example 5 sets ah to 1 if ah is
zero, otherwise it is set to 0. The ah ? statement sets the flags, based
on a comparison of the specified register with zero, by emitting a Test
ah,ah instruction. Though some programmers use Or ah,ah and
others use And ah,ah, all three do exactly the same thing. Take note
of the comma separating the two groups of statements delimited by
braces. The == is read as if equal (to zero in this case), the { is read as
then, the },{ as else and the }; as endif.

As we have seen, flow control conditionals may be placed at the
beginning (if) or end (while) of a group of statements enclosed by
braces. terse allows conditionals to be placed at both ends of a block
creating an if-do-while statement. The statements in Example 6 delay
ax times through the loop if-and-only-if ax is non-zero.

Some Miscellaneous Examples
The following are a few disjoint examples of some other features of

the terse language. Example 7 shows how the programmer has control
over the evaluation of constant sub expressions. The statement in
Example 7(a) generates two instructions, forcing the processor to
evaluate the sub expression at run time. The statement in Example 7(b)
generates a single statement and evaluates the parenthetical sub
expression at compile/assembly time, before the program is run. As a
general rule, anything you don't want terse to “see” should be enclosed
in parenthesis.

A common function is to “walk” a pointer through an array or list.
You can see in Example 8 how the ability to pre/post increment and/or
decrement index and base registers saves coding time and makes the
code easier to read. The terse statement in Example 8(b) uses the infix
binary operator ^ to denote the exclusive or (Xor) operation (just like in
“C”).

The terse statement in Example 9(a) is a Push operation. This
syntax was chosen because push is a form of assignment, but the
destination is not specified, it is implied. Example 9(b) is a Pop
operation (a form of assignment where the source is not specified).

The two statements in Example 10 demonstrate compound Push
and Pop statements. Observe that the Pushes (Example 10(a)) are
performed left-to-right and the Pops (Example 10(b)) are performed
right-to-left, forever eliminating the need to invert the order of these
operations in your head.

These few examples should give you a good sense of the basic look-
and-feel of the language. There is a mini-quiz below to test your terse
reading ability. There are many operations I have not yet explained, but
using your knowledge of the Intel x86 architecture, and the terse syntax
I have explained so far, you should be able to derive most of them.

terse Generated Code
 al - 5 ? >> Cmp al,5
 { al = 5; }; Jbe ?Els02
 ?Top02:
 Mov al,5
 ?Els02:

Example 4: A simple if statement using terse structured flow
control constructs. If al is above 5 then al = 5.

terse Generated Code
 ah ? == Test ah,ah
 { ah = 1; }, Jne ?Els03
 { ah = 0; }; ?Top03:
 Mov ah,1
 Jmp ?End03
 ?Els03:
 Mov ah,0
 ?End03:

Example 5: An if-then-else using terse structured flow control
constructs. If ah is zero then ah = 1 else ah = 0.

terse Generated Code
 ax ? <> Test ax,ax
 { ax-; }<>; Je ?Els05
 ?Top05:
 Dec ax
 Jne ?Top05
 ?Els05:

Example 6: A double ended if-while loop, using terse structured
flow control constructs. If ax is non-zero then decrement ax and
loop while ax is non-zero

terse Generated Code
(a)
 ax = 1 + 2; Mov ax,1
 Add ax,2

(b)
 bx = (1 + 2); Mov bx,1+2

Example 7: (a) A constant sub expression, evaluated at run time;
(b) the sub expression is “hidden” from terse by the parenthesis
and is subsequently evaluated at compile/assembly time, not run
time.

terse Generated Code
(a)
 dx = [si++]; Mov dx,[si]
 Inc si
 Inc si
(b)
 al ^ [-bx]; Dec bx
 Xor al,[bx]

Example 8: Pre and post increment/decrement constructs. (a)
post word increment; (b) pre byte decrement.

terse Generated Code
(a)
 =si; Push si
(b)
 di=; Pop di

Example 9: (a) A simple Push; (b) a simple Pop. Think of them
as assignments with implied operands.

terse: Relief for the Forlorn Programmer © 1995, JimNeiL All Rights Reserved

4

A Few Comments About Comments
I have always been a firm believer in copious internal program
documentation, especially in low-level programs. In designing terse, it
was a requirement that commenting be a simple task. I have always
been a fan of the comment-to-end-of-line style of comments. My
philosophy is “If you don't have anything to say about a line of code,
what is it doing in the program?” Therefore, I
needed a single lowercase character that was
pleasing to the eye and not requisite for the
specification of any processor operation. The terse
commenting character is the backslash (downhill
slash). It fits all of these requirements. All
characters following an unprotected \ are ignored as
shown in Example 11.

Now that you have mastered the syntax, take a
look at Listing One (sieve.t), a terse
implementation of the Sieve of Eratosthenes. It
generates a DOS .COM program that computes and
displays all of the primes in the first 65536 integers.
The internal documentation should make it
intelligible.

Complete Compatibility
Understanding the realities of the world of software
development, compatibility with all of the many
existing development environments was a primary
concern. The compiler needed to work with existing
tools, no matter who's assembler, compilers and
linkers were being used on a project. The existence of multiple object
file formats and the complexity of generating compatible object code
lead me to an obvious decision– don't generate object code at all!
Instead I chose to generate assembly language and use the assembler as
a common code generator, insuring compatibility with any object file
format. This allows the programmer to exploit any and all peculiarities
of an individual vendors implementation.

The choice to generate assembly language however meant increased
overhead at compile time. The user would have to compile the terse and
then assemble the output of the compiler. I hate waiting for computers
to do anything so I felt it was unacceptable to create any significant
additional overhead. Again there was an obvious solution to this
dilemma– construct a compiler that was so fast that the additional
overhead incurred would be inconsequential.

Faster Than a Speeding Bullet
terse is an extremely fast compiler. Compilation times are measured in

thousands of lines per second! To accomplish this, I used all of my
real-time programming knowledge and experience. I wrote the compiler
as if I was writing a real-time program. Both the lexical and syntax
analyzers are fully table driven. The lexical analyzer makes extensive
use of jump tables and special hardware features of the Intel x86
architecture, like the Xlat and Lodsb instructions, to eke every cycle
out of the processor. The tables for the syntax analyzer are an
exhaustive enumeration of the language. The terse compiler is
implemented in assembler and was the last x86 assembly language
program I ever wrote. All of this, combined with huge I/O buffers,
make the incremental overhead incurred an insignificant price to pay.

Pass the Buck
Another benefit of emitting assembler is the capacity for the user to

intermix assembly language statements along with
terse statements. This is particularly useful for
accessing the pseudo-ops which vary from one
implementation to the next. Any statement not
recognized to be a valid terse statement is passed
through to the assembler. This also means that if
you feel more comfortable using standard
assembler syntax for some instructions you may,
with the additional benefit of multiple statements
per line.

Portability or VHS vs. Beta
Since terse is Intel x86 specific, you might
consider it to be a non-portable language.
However, considering that the overwhelming
majority of the PCs in the world are Intel x86
based, this isn't much of a penalty. More
importantly, since terse has a hi-level look and
feel, when it comes time to down-code a routine
for efficiency, terse makes the port to low-level
simple because of its familiar operators and
structure. You get to think the way you are used

to thinking, in a horizontal, structured, symbolic way.

Conclusion
Ever since I began using terse the joy I once had for programming has
returned. Programming in terse reminds me of sailing, it's like getting
something for nothing. Its symbolic notation makes it ideal for learning
low-level programming and for non-English speaking programmers too.
(What does Mov mean in Japanese?) It eliminates most of the tedium of
assembly language while delivering absolute and complete control of
the processor to the programmer. terse has been used in medical,
military and industrial applications since 1988. The compiler is fully
tested and the language has proven itself in the real world. Learn terse
today and start enjoying the benefits of the first real improvement in
low-level programming since the invention of the macro assembler.

DDJ

eliminates most
of the tedium of

assembly
language while

delivering
absolute and

complete control —

terse Generated Code
(a)
 =ax =bx =cx; Push ax
 Push bx
 Push cx
(b)
 ax= bx= cx=; Pop cx
 Pop bx
 Pop ax

Example 10: (a) A compound Push statement; (b) a compound
Pop statement.

terse
ax = 7FFFh; { ax-; }<>; \ delay a while..

Example 11: The terse commenting character is the backslash
(downhill slash) and signifies a comment to the end of the line.

terse: Relief for the Forlorn Programmer © 1995, JimNeiL All Rights Reserved

5

terse Mini Quiz

terse Hints

1. ax >> 1; dx > 1;
bx << 2; cx < 3;

These are NOT comparison
operations. The left ones are
somewhat like “C”.

2. *ah; **dx;
/cl; //bx;

Remember larger operators
work on unsigned values and
think about x86 implied
registers.

3. ax - bx; -ax; These should be obvious.
4. ax ^ bx; ^ax; These are the logical

equivalent of the example
above.

5. ax + 10; dx ++ 0; The ++ is NOT an unsigned
operation.

6. ' cat;
" dog =1;
"" ptr =dog;
' fox[8];

These are real tough.
They declare variables,
allocate storage and initialize
memory. Now can you figure
them out?

7. { !-; }.; If you have read the article
you know “!” means
interrupt and .lab is a Jmp
lab. This will intentionally
hang the computer!

8. cx = 1000; {}-.; Yet another delay, this one
uses a register specific
instruction.

9. al & bl; &dx; The first one is easy.
To solve the other one think
of Anding something with
nothing.

10. =.Sub1; .=; If “.” means Jmp and “=ax”
means Push, “=.” must
mean...? The other one
occurs at the end of Sub1.

terse: Relief for the Forlorn Programmer © 1995, JimNeiL All Rights Reserved

6

Answers to the
terse Mini Quiz

Intel x86 Assembler Explanations

1. Ror ax,1
 Shr dx,1
 Rol bx,2
 Shl cx,3

The “>>” and “<<” operators
are rotates, the “>” and “<”
operators are shifts. Why?
Because rotates do a bit more
work than shifts!

2. Imul ah
 Mul dx
 Idiv cl
 Div bx

The “*” is an integer (signed)
multiply and the “**” is
unsigned. The x86 uses
assumed dedicated registers
for the destinations so you
only need to (get to) specify
the source. The second pair
are integer and unsigned
divisions.

3. Sub ax,bx
 Neg ax

These were too easy.

4. Xor ax,bx
 Not ax

The Xor was explained in
the article. The “^” was used
for Not because exclusive or
can be thought of as a logical
subtract.

5. Add ax,10
 Adc dx,0

The “++” is used for add
with carry because it does a
bit more than an add!

6. cat db ?

dog dw 1

ptr dd dog

fox db 8 Dup(?)

A leading single quote is a
declare byte (db) statement.
A leading double quote is a
declare word (dw) (double
byte) statement.
Two leading double quotes is
a declare double word (dd)
(four byte) statement.
The brackets allow for array
declarations.

7. lab:
 Cli;
 Jmp lab

The “!-” means interrupts
off. The “}.” can be thought
of as do-forever.

8. Mov cx,1000
lab:
 Loop lab

The “-.” can be read as
decrement-and-jump, better
known as the Loop operation
on the Intel x86.

9. And al,bl
 Xor dx,dx

The first one was easy, no?
The other one solves the
problem of the missing clear
instruction on the Intel x86.

10. Call Sub1
 Ret

Think of “=.” as push-jump
and “.=” as jump-from-stack.

terse: Relief for the Forlorn Programmer © 1995, JimNeiL All Rights Reserved

7

Listing One
Name Sieve; \ name of program module in .OBJ file.
Title "Sieve of Eratosthenes"; \ title of program for listing file.
.186; \ allow Intel 186 & above instructions.

main Group code,data; \ declare Group main as 2 segments.
Assume cs:main,ss:main,ds:main,es:main; \ all Segment regs point to main Group.

O Equ <Offset main:>; \ define O as Offset operator.
H Equ <256 *>; \ define H as High operator.
L Equ <+>; \ define L as Low operator.

code Segment; \ define code Segment.
Org 0100h; \ all .COM programs start at 0100h.

data Segment; \ define data Segment.
 ' First2 ='1', =13, =10, \ Initial 2 primes message text...
 ='2', =13, =10, =24h; \ followed by a $ for DOS.
 ' Primes =" primes.", \ declare message text...
 crlf =13, =10, =24h; \ followed by CR, LF and $ for DOS.
EOP Label Byte; \ define End Of Program.
data EndS; \ close data segment, goes after code.

\\\\\\\\
Sieve: \
\\\\\\\\
\
\ Computes and displays all of the primes between 0 and 65536 using the
\ Eratosthenes' Sieve method. Note that the first 2 primes (1 and 2)
\ are handled as a special case.
\
\ Printing takes ~100 times longer than computing the primes. For testing
\ speed, comment out the lines that have the comments beginning with a *
\
\ Register Usage:
\ ax = scratch.
\ bx = count, counts number of primes.
\ cx = scratch.
\ dx = prime, the current prime we are working with.
\ si = i, an index into the flags array.
\ di = k.
\

 dx = O(First2); ah = 9; !21h; * print first 2 primes using DOS.
 sp = O(EOP + 512); \ set up 256 word stack at end of prog.
 bx = sp + 15 > 4; \ bx = number of paragraphs we use.
 es = ds = ax = cs + bx; \ setup ds,es to free space past stack.

 cx = 32768; ax = (-1); &di; \ cx = number, ax = value, di = offset.
 +; <> ** =; \ auto-inc, clear full 64K flags array.

 bx = 2; &si; &ch; \ count = 2 (for 1 & 2), i = 0, ch = 0.
 { \ do...
 cl = [si]; ?<> \ if flags[i] is non-zero...
 { \ then...
 dx = si + si + 3; <<1; \ prime = i * 2 + 3, break if done...
 ax = dx; =.PrintNum; * print prime using PrintNum.
 ax = H(14) L(13); !10h; * print CR using BIOS.
 ax = H(14) L(10); !10h; * print LF using BIOS.
 di = si + dx; >> \ k = i + prime, if & while k << limit,
 { [di] = ch; di + dx; }>>; \ do flags[k] = 0, k = k + prime.
 bx+; \ count = count + 1;
 }; \ endif flags[i] is non-zero.
 si+; \ i = i + 1.
 }.; \ loop forever-- break gets us out.

 es = ds = ax = cs; \ restore ds and es.
 ax = bx; =.PrintNum; \ print ax in decimal to screen.
 dx = O(Primes); ah = 9; !21h; \ print " primes." using DOS.
 !20h; \ return to DOS.

\\\\\\\\\\
PrintNum \
\\\\\\\\\\
\
\ PrintNum prints the unsigned number in ax to the screen in decimal.
\
\ Entry Conditions:
\ ax = unsigned number to convert.
\
\ Exit Conditions:
\ all registers are preserved.
\

Proc Near; \ procedure to convert & print numbs.
 =ax =bx =cx =dx; \ save registers on stack.
 bx = 10; &cx; \ bx = base (10), cx = 0 (counts digs).
 { \ do...
 &dx; //bx; \ dxax = num, dx = rem, ax = quo.
 dl | '0'; =dx; \ convert, push ASCII digit onto stack.
 cx+; ax? \ count digit, if any left to do...
 }<>; \ loop 'til done...
 bx = 15; \ bx = color (bright white).
 { ax=; ah = 14; !10h; }-.; \ ax = pop dig, print, loop 'til done.
 ax= bx= cx= dx=; \ restore registers from stack.
 .=; \ return...............................
PrintNum EndP; \ end proc to convert & print numbs.

code EndS; \ close code Segment, goes before data.
End Sieve; \ end of source, start at Sieve.

